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Abstract 

The roles of prior information, event space and choice of 
constraint functions in information-theoretic approaches to 
the crystallographic inversion problem are discussed, with 
a view to relating recent articles on the inversion problem. 
In particular, the important distinction between the general 
expression for the entropy of a probability distribution 
function and specific derived forms for entropy involving, 
for example, mean values of the corresponding random 
variables, is pointed out and illustrated. 

Information theory can provide a very general and powerful 
approach to problems of statistical inference (Jaynes, 1982). 
However, great power must be tempered by great care in 
order for any good to result. In this note it is our purpose 
to focus attention on some of the areas in the information- 
theoretic approach in which such care is required, with a 
particular view to elucidating some of the assumptions 
underlying recent articles (Britten & Collins, 1982; Narayan 
& Nityananda, 1982; Piro, 1983; Wilkins, Varghese & 
Lehmann, 1983) on the crystallographic inversion problem. 

The key concept and starting point for an information- 
theoretic approach to a problem in statistical inference is 
the concept of a unique and consistent measure of the 
information content, /, in a probability distribution P(e) 
relative to a given prior P°(e) (Shannon & Weaver, 1949; 
Kullback, 1959; Levine, 1980; Jaynes, 1982): 

I = )-'. P(e) log {P(e)/P°(e)}, 
e E E  

where P(e) is the probability distribution of the random 
variables e, taking values in the event space E. {If the prior 
p0 is not normalizable, e.g. a uniform prior on [0, oo], then 
l ' = - H = ~ , P ( e ) l o g P ( e )  is used; the term 'entropy' is 
usually used for H.} The precise specification both of the 
event space E and the prior p0 is very important and should 
ideally be such as to incorporate all prior knowledge about 
the system as efficiently as possible. 

In crystallography there are two variables of interest: (i) 
the electron density p(r) in the unit cell; (ii) the set of 
structure factors {FH}. 

Working with functions of a continuous variable is often 
impractical and so, for convenience, the unit cell is some- 
times subdivided into N identical pixels, whereby the elec- 
tron density is turned into a vector P with pj the mean 
electron density in pixel j. 

The information-theoretic approach then consists in 
determining the probability distribution function P which 
minimizes the information I in a way that is consistent with 
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the measured data and the prior information. Once this 
distribution function has been determined an estimate for 
p (or {FH}) may be obtained as the mean value with respect 
to P. 

For calculational purposes it is often more convenient 
to recast the minimization of ! with respect to P(p) [or 
P({Fn})] into an equivalent minimization (maximization) 
problem with respect to the mean values, or some other 
quantity of interest. The precise form of this reformulated 
problem, however, depends on (1) the event space, (2) the 
prior information and (3) the form of the constraints-a 
dependence not often explicitly discussed. 

In Table 1 a series of reformulated cases is listed, based 
largely on results given by Levine (1980). The first column 
in Table 1 lists the kind of constraints: only linear and 
quadratic cases are considered. The second column shows 
the event space, the third column the prior information and 
the fourth the equivalent form of the information. It must 
be stressed that this equivalent form is not a general infor- 
mation measure. The point being that it is only under 
particular assumptions, such as those shown in columns 1, 
2 and 3, that the minimization of I and the minimization 
(maximization) of the forms shown in column 4 are 
equivalent. 

Various possible correspondences may be made between 
actual physical situations and the entries in the table. For 
the crystallographic inversion problem, for example, linear 
constraints could be taken to correspond to the case where 
a subset of all structure factors is known (including phases), 
while the case of quadratic constraints could correspond 
to the phaseless problem, i.e. a subset of intensities is 
measured. 

The equivalence between minimizing the information and 
maximizing the integral of the logarithm of the power 
spectrum was first derived by Burg (1967) for the special 
case where autocorrelations of a discretely sampled time 
series are the measured quantities, while the quantity to be 
estimated is the power spectrum. The form 'integral of the 
logarithm of a quantity' has subsequently (misleadingly) 
been given a more fundamental significance than it actually 
deserves and termed 'Burg entropy' .  Note that for quadratic 
constraints the 'Burg form' is only obtained when the vari- 
able is unrestricted, i.e. runs from - ~  to +oo; any restriction, 
like positivity, will give rise to a different equivalent form, 
which as yet has not been worked out. 

The difference between the time-series and crystallo- 
graphic cases is that, in the latter, the variables are for 
physical reasons restricted to a subspace determined in real 
space by the condition p(r )> 0, or in reciprocal space by 
the condition that all the Karle-Hauptmann determinants 
must be positive. These two conditions are well known to 
be equivalent (Karle & Hauptmann, 1950; Steenstrup, 
1984). 

Britten & Collins (1982) and Piro (1983) use reciprocal 
space as the primary event space with quadratic constraints 
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Table 1. Relations between assumed input information (columns l, 2 and 3) and derived expressions for  the information 
function I (column 4) 

Notation: R set of real numbers, R+ set of positive real numbers, N set of integers, x set of random variables, e.g. 
electron densities, or set of structure factors. 

Data constraints 

Linear 

A, = (,~1 a~,x,) 

Event ,space Prior probability 
E po 

x ~ N  N 

n~ 
r= 1 . . . . .  m x i E{O . . . . .  n} N - ' - -  

xl!. . .xN! 

Quadratic 

Ar=(i~=l x,xr+i I 

N 

E x i = n  
i=1 

x ~ R  N 

Equivalent 
Information //entropy H 

H=  ~. iog(x i) 
i=1 

N 
n = ~ (1 +(x,)) log (l +(x,)) 

i=l 
- (xi)  log (x  i) 

I = n l o g N +  ~ p, logp, 
i=l 

p, = (X~)/n 

H = I ~ , , l ° g P ( t ° ) d w  

P(~o) = ~. A~ e i~ 
r=| 

- i.e. assumptions corresponding to the fourth row - to 
obtain a multivariate Gaussian probability distribution 
function in the structure factors and obtain the normaliz- 
ation by extending integration over all space ignoring the 
positivity constraint on p(r). The 'complementary' result to 
that of Burg is thereby obtained, namely that the autocorre- 
lations between structure factors in reciprocal space yield 
the corresponding 'power spectrum' in direct space, i.e. 
electron density squared. 

The equivalence between the maximum determinant 
method and the maximum of the 'integral of logarithm of 
electron density' form is established by Narayan & 
Nityananda (1982). However, it is not explicitly stated 
whether the identification of this form with entropy is based 
on the assumptions corresponding to those in the first row 
in our table or to those in the fourth. 

We believe that for the crystallographic inversion prob- 
lem the assumptions corresponding to neither the first row 
nor the fourth row are really appropriate. The nature of 
the problem indicates that: 

(i) only a finite number of distinct sets p corresponds to 
distinguishable measurements (structure factors, 
intensities), by arguments of 'complementarity'; 

(ii) the total number of electrons in the unit cell is fixed 
and usually known; and 

(iii) the electron density is bounded. 
The assumptions in the third row are therefore, in our view, 

the appropriate ones and are the ones used by Wilkins et 
al. (1983). With these assumptions, however, there is then 
no direct relation between the maximum determinant 
method and the maximum entropy principle. 
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